High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth

نویسندگان

  • Jiao Wang
  • Mengqi Zeng
  • Lifang Tan
  • Boya Dai
  • Yuan Deng
  • Mark Rümmeli
  • Haitao Xu
  • Zishen Li
  • Sheng Wang
  • Lianmao Peng
  • Jürgen Eckert
  • Lei Fu
چکیده

The high-quality and low-cost of the graphene preparation method decide whether graphene is put into the applications finally. Enormous efforts have been devoted to understand and optimize the CVD process of graphene over various d-block transition metals (e.g. Cu, Ni and Pt). Here we report the growth of uniform high-quality single-layer, single-crystalline graphene flakes and their continuous films over p-block elements (e.g. Ga) liquid films using ambient-pressure chemical vapor deposition. The graphene shows high crystalline quality with electron mobility reaching levels as high as 7400 cm(2) V(-1) s(-1) under ambient conditions. Our employed growth strategy is ultra-low-loss. Only trace amounts of Ga are consumed in the production and transfer of the graphene and expensive film deposition or vacuum systems are not needed. We believe that our research will open up new territory in the field of graphene growth and thus promote its practical application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride

The direct growth of high-quality, large single-crystalline domains of graphene on a dielectric substrate is of vital importance for applications in electronics and optoelectronics. Traditionally, graphene domains grown on dielectrics are typically only ~1 μm with a growth rate of ~1 nm min(-1) or less, the main reason is the lack of a catalyst. Here we show that silane, serving as a gaseous ca...

متن کامل

Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition

The mechanisms determining the growth of high-quality monolayer and bilayer graphene on Cu using chemical vapor deposition (CVD) were investigated. It is shown that graphene growth on Cu is not only determined by the process parameters during growth, but also substantially influenced by the quality of Cu substrate and how the Cu substrate is pretreated. It is found that the micro-topography of ...

متن کامل

High Quality Monolayer Graphene Synthesized by Resistive Heating Cold Wall Chemical Vapor Deposition

DOI: 10.1002/adma.201501600 CVD, as well as on its quality and suitability for fl exible electronic applications. Therefore, understanding the growth and properties of graphene obtained with cold-wall CVD is imperative to enable the exploitation of this material and facilitate the birth of novel graphene-based applications. Here we report a completely new mechanism for the growth of graphene by...

متن کامل

Synthesis of Continuous Graphene Film Using Liquid Pyridine Precursor

Due to unique structural and electrical properties of graphene, it has attracted noteworthy attention. Among various synthetic approach methodes of graphene, the metal-assisted chemical vapor deposition (CVD) method is the most sensible method to produce graphene films of low-defect and large-scale. Until now, the CVD method using hydrocarbon sources of gas state has synthesized as the large-sc...

متن کامل

Single-step deposition of high-mobility graphene at reduced temperatures.

Current methods of chemical vapour deposition (CVD) of graphene on copper are complicated by multiple processing steps and by high temperatures required in both preparing the copper and inducing subsequent film growth. Here we demonstrate a plasma-enhanced CVD chemistry that enables the entire process to take place in a single step, at reduced temperatures (<420 °C), and in a matter of minutes....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013